Have any question?
+91 8106-920-029
+91 6301-939-583
team@appliedaicourse.com
Live Sessions
Register Login
AppliedAICourseAppliedAICourse
  • Courses
    • Applied Machine Learning Course
    • Workshop
    • Case Studies
  • Job Guarantee
    • Success Stories
    • Job Guarantee Terms & Conditions
    • Portfolios
    • Incubation Center
  • Success Stories
  • Schedule
  • Hire From Us
  • Contact Us
  • Courses
    • Applied Machine Learning Course
    • Workshop
    • Case Studies
  • Job Guarantee
    • Success Stories
    • Job Guarantee Terms & Conditions
    • Portfolios
    • Incubation Center
  • Success Stories
  • Schedule
  • Hire From Us
  • Contact Us

AI Projects/ Case Studies

  • Home
  • All courses
  • AI Projects/ Case Studies
  • Facebook Friend Recommendation using Graph Mining
PricingAI Projects/ Case StudiesFacebook Friend Recommendation using Graph Mining
  • Python for Data Science Introduction 0/0

    • Lecture1.1
      Python, Anaconda and relevant packages installations 23 min
    • Lecture1.2
      Why learn Python? 04 min
    • Lecture1.3
      Keywords and identifiers 06 min
    • Lecture1.4
      comments, indentation and statements 09 min
    • Lecture1.5
      Variables and data types in Python 32 min
    • Lecture1.6
      Standard Input and Output 07 min
    • Lecture1.7
      Operators 14 min
    • Lecture1.8
      Control flow: if else 10 min
    • Lecture1.9
      Control flow: while loop 16 min
    • Lecture1.10
      Control flow: for loop 15 min
    • Lecture1.11
      Control flow: break and continue 10 min
  • Python for Data Science: Data Structures 0/6

    • Lecture2.1
      Lists 38 min
    • Lecture2.2
      Tuples part 1 10 min
    • Lecture2.3
      Tuples part-2 04 min
    • Lecture2.4
      Sets 16 min
    • Lecture2.5
      Dictionary 21 min
    • Lecture2.6
      Strings 16 min
  • Python for Data Science: Numpy 0/2

    • Lecture3.1
      Numpy Introduction 41 min
    • Lecture3.2
      Numerical operations on Numpy 41 min
  • Python for Data Science: Functions 0/10

    • Lecture4.1
      Introduction 13 min
    • Lecture4.2
      Types of functions 25 min
    • Lecture4.3
      Function arguments 10 min
    • Lecture4.4
      Recursive functions 16 min
    • Lecture4.5
      Lambda functions 08 min
    • Lecture4.6
      Modules 07 min
    • Lecture4.7
      Packages 06 min
    • Lecture4.8
      File Handling 23 min
    • Lecture4.9
      Exception Handling 15 min
    • Lecture4.10
      Debugging Python 15 min
  • Python for Data Science: Matplotlib 0/1

    • Lecture5.1
      Getting started with Matplotlib 20 min
  • Python for Data Science: Pandas 0/3

    • Lecture6.1
      Getting started with pandas 08 min
    • Lecture6.2
      Data Frame Basics 09 min
    • Lecture6.3
      Key Operations on Data Frames 31 min
  • Python for Data Science: Computational Complexity 0/4

    • Lecture7.1
      Space and Time Complexity: Find largest number in a list 20 min
    • Lecture7.2
      Binary search 17 min
    • Lecture7.3
      Find elements common in two lists 06 min
    • Lecture7.4
      Find elements common in two lists using a Hashtable/Dict 12 min
  • Plotting for exploratory data analysis (EDA) 0/0

    exploratory data analysis (EDA) is an approach to analyzing data sets to summarize their main characteristics, often with visual methods. A statistical model can be used or not, but primarily EDA is for seeing what the data can tell us beyond the formal modeling or hypothesis testing task.

    • Lecture8.1
      Introduction to IRIS dataset and 2D scatter plot 26 min
    • Lecture8.2
      3D scatter plot 06 min
    • Lecture8.3
      Pair plots 14 min
    • Lecture8.4
      Limitations of pair plots 02 min
    • Lecture8.5
      Histogram and Introduction to PDF(Probability Density Function) 17 min
    • Lecture8.6
      Univariate Analysis using PDF 06 min
    • Lecture8.7
      CDF(Cumulative Distribution Function) 15 min
    • Lecture8.8
      Mean, Variance and Standard Deviation 17 min
    • Lecture8.9
      Median 10 min
    • Lecture8.10
      Percentiles and Quantiles 09 min
    • Lecture8.11
      IQR(Inter Quartile Range) and MAD(Median Absolute Deviation) 06 min
    • Lecture8.12
      Box-plot with Whiskers 09 min
    • Lecture8.13
      Violin Plots 04 min
    • Lecture8.14
      Summarizing Plots, Univariate, Bivariate and Multivariate analysis 06 min
    • Lecture8.15
      Multivariate Probability Density, Contour Plot 09 min
    • Lecture8.16
      Exercise: Perform EDA on Haberman dataset 04 min
  • Linear Algebra 0/1

    It will give you the tools to help you with the other areas of mathematics required to understand and build better intuitions for machine learning algorithms.

    • Lecture9.1
      Why learn it ? 04 min
    • Lecture9.2
      Introduction to Vectors(2-D, 3-D, n-D) , Row Vector and Column Vector 14 min
    • Lecture9.3
      Dot Product and Angle between 2 Vectors – 14 min
    • Lecture9.4
      Projection and Unit Vector 05 min
    • Lecture9.5
      Equation of a line (2-D), Plane(3-D) and Hyperplane (n-D), Plane Passing through origin, Normal to a Plane 23 min
    • Lecture9.6
      Distance of a point from a Plane/Hyperplane, Half-Spaces 10 min
    • Lecture9.7
      Equation of a Circle (2-D), Sphere (3-D) and Hypersphere (n-D) 07 min
    • Lecture9.8
      Equation of an Ellipse (2-D), Ellipsoid (3-D) and Hyperellipsoid (n-D) 06 min
    • Lecture9.9
      Square ,Rectangle 06 min
    • Lecture9.10
      Hyper Cube,Hyper Cuboid 03 min
    • Lecture9.11
      Assignment[Optional] 30 min
  • Interview Questions on Linear Algebra 0/0

    • Lecture10.1
      Questions & Answers 30 min
  • Probability and Statistics 0/28

    • Lecture11.1
      Introduction to Probability and Stats 17 min
    • Lecture11.2
      Population and Sample 07 min
    • Lecture11.3
      Gaussian/Normal Distribution and its PDF(Probability Density Function) 27 min
    • Lecture11.4
      CDF(Cumulative Distribution function) of Gaussian/Normal distribution 11 min
    • Lecture11.5
      Symmetric distribution, Skewness and Kurtosis 05 min
    • Lecture11.6
      Standard normal standardization 05 min
    • Lecture11.7
      Kernel density estimation 07 min
    • Lecture11.8
      Sampling distribution & Central Limit theorem 19 min
    • Lecture11.9
      Q-Q plot:How to test if a random variable is normally distributed or not? 23 min
    • Lecture11.10
      Discrete and Continuous Uniform distributions 13 min
    • Lecture11.11
      How to randomly sample data points (Uniform Distribution) 10 min
    • Lecture11.12
      Bernoulli and Binomial Distribution 11 min
    • Lecture11.13
      Log Normal Distribution 12 min
    • Lecture11.14
      Power law distribution 12 min
    • Lecture11.15
      Box cox transform 12 min
    • Lecture11.16
      Co-variance 14 min
    • Lecture11.17
      Pearson Correlation Coefficient 13 min
    • Lecture11.18
      Spearman Rank Correlation Coefficient 07 min
    • Lecture11.19
      Correlation vs Causation 03 min
    • Lecture11.20
      Confidence interval (C.I) Introduction 08 min
    • Lecture11.21
      Discrete and Continuous Uniform distributions 11 min
    • Lecture11.22
      C.I for mean of a normal random variable 14 min
    • Lecture11.23
      Confidence interval using bootstrapping 17 min
    • Lecture11.24
      Hypothesis testing methodology, Null-hypothesis, p-value 16 min
    • Lecture11.25
      Resampling and permutation test 15 min
    • Lecture11.26
      K-S Test for similarity of distributions 15 min
    • Lecture11.27
      K-S Test for similarity of two distributions 06 min
    • Lecture11.28
      Hypothesis Testing Intution with coin toss example 27 min
    • Lecture11.29
      Hypothesis testing Mean differences Example 18 min
    • Lecture11.30
      Resampling 19 min
  • Interview Questions on Probability and statistics 0/0

    • Lecture12.1
      Questions & Answers 30 min
  • Dimensionality reduction and Visualization: 0/0

    In machine learning and statistics, dimensionality reduction or dimension reduction is the process of reducing the number of random variables under consideration, via obtaining a set of principal variables. It can be divided into feature selection and feature extraction.

    • Lecture13.1
      what is dimensionality reduction? 03 min
    • Lecture13.2
      Row Vector and Column Vector 05 min
    • Lecture13.3
      How to represent a data set? 04 min
    • Lecture13.4
      How to represent a dataset as a Matrix. 07 min
    • Lecture13.5
      Data preprocessing: Column Normalization 20 min
    • Lecture13.6
      Mean of a data matrix 06 min
    • Lecture13.7
      Data preprocessing: Column Standardization 16 min
    • Lecture13.8
      Co-variance of a Data Matrix 24 min
    • Lecture13.9
      MNIST dataset (784 dimensional) 20 min
    • Lecture13.10
      Code to load MNIST Dataset 12 min
  • Interview Questions on Dimensionality Reduction 0/0

    • Lecture14.1
      Questions & Answers 30 min
  • PCA(principal component analysis) 0/0

    • Lecture15.1
      Why learn PCA? 04 min
    • Lecture15.2
      Geometric intuition of PCA 14 min
    • Lecture15.3
      Mathematical objective function of PCA 13 min
    • Lecture15.4
      Alternative formulation of PCA: Distance minimization 10 min
    • Lecture15.5
      Eigen values and Eigen vectors 23 min
    • Lecture15.6
      PCA for Dimensionality Reduction and Visualization 10 min
    • Lecture15.7
      Visualize MNIST dataset 05 min
    • Lecture15.8
      Limitations of PCA 05 min
    • Lecture15.9
      PCA Code example using Visualization 19 min
    • Lecture15.10
      PCA Code example using non-Visualization 15 min
  • (t-SNE)T-distributed Stochastic Neighbourhood Embedding 0/1

    • Lecture16.1
      What is t-SNE? 07 min
    • Lecture16.2
      Neighborhood of a point, Embedding 07 min
    • Lecture16.3
      Geometric intuition of t-SNE 09 min
    • Lecture16.4
      Crowding Problem 08 min
    • Lecture16.5
      How to apply t-SNE and interpret its output 38 min
    • Lecture16.6
      t-SNE on MNIST 07 min
    • Lecture16.7
      Code example of t-SNE 09 min
    • Lecture16.8
      Assignment 30 min
  • Real world problem: Predict rating given product reviews on Amazon 0/17

    • Lecture17.1
      Dataset overview: Amazon Fine Food reviews(EDA) 23 min
    • Lecture17.2
      Data Cleaning: Deduplication 15 min
    • Lecture17.3
      Why convert text to a vector? 14 min
    • Lecture17.4
      Bag of Words (BoW) 18 min
    • Lecture17.5
      Text Preprocessing: Stemming, Stop-word removal, Tokenization, Lemmatization. 15 min
    • Lecture17.6
      uni-gram, bi-gram, n-grams. 09 min
    • Lecture17.7
      tf-idf (term frequency- inverse document frequency) 22 min
    • Lecture17.8
      Why use log in IDF? 14 min
    • Lecture17.9
      Word2Vec. 16 min
    • Lecture17.10
      Avg-Word2Vec, tf-idf weighted Word2Vec 09 min
    • Lecture17.11
      Bag of Words( Code Sample) 19 min
    • Lecture17.12
      Text Preprocessing( Code Sample) 11 min
    • Lecture17.13
      Bi-Grams and n-grams (Code Sample) 05 min
    • Lecture17.14
      TF-IDF (Code Sample) 06 min
    • Lecture17.15
      Word2Vec (Code Sample) 12 min
    • Lecture17.16
      Avg-Word2Vec and TFIDF-Word2Vec (Code Sample) 02 min
    • Lecture17.17
      Exercise: t-SNE visualization of Amazon reviews with polarity based color-coding 06 min
  • Classification And Regression Models: K-Nearest Neighbors 0/31

    • Lecture18.1
      How “Classification” works? 10 min
    • Lecture18.2
      Data matrix notation 07 min
    • Lecture18.3
      Classification vs Regression (examples) 06 min
    • Lecture18.4
      K-Nearest Neighbours Geometric intuition with a toy example 11 min
    • Lecture18.5
      Failure cases of KNN 07 min
    • Lecture18.6
      Distance measures: Euclidean(L2) , Manhattan(L1), Minkowski, Hamming 20 min
    • Lecture18.7
      Cosine Distance & Cosine Similarity 19 min
    • Lecture18.8
      How to measure the effectiveness of k-NN? 16 min
    • Lecture18.9
      Test/Evaluation time and space complexity 12 min
    • Lecture18.10
      KNN Limitations 09 min
    • Lecture18.11
      Decision surface for K-NN as K changes 23 min
    • Lecture18.12
      Overfitting and Underfitting 12 min
    • Lecture18.13
      Need for Cross validation 22 min
    • Lecture18.14
      K-fold cross validation 17 min
    • Lecture18.15
      Visualizing train, validation and test datasets 13 min
    • Lecture18.16
      How to determine overfitting and underfitting? 19 min
    • Lecture18.17
      Time based splitting 19 min
    • Lecture18.18
      k-NN for regression 05 min
    • Lecture18.19
      Weighted k-NN 08 min
    • Lecture18.20
      Voronoi diagram 04 min
    • Lecture18.21
      Binary search tree 16 min
    • Lecture18.22
      How to build a kd-tree 17 min
    • Lecture18.23
      Find nearest neighbours using kd-tree 13 min
    • Lecture18.24
      Limitations of Kd tree 09 min
    • Lecture18.25
      Extensions 03 min
    • Lecture18.26
      Hashing vs LSH 10 min
    • Lecture18.27
      LSH for cosine similarity 40 min
    • Lecture18.28
      LSH for euclidean distance 13 min
    • Lecture18.29
      Probabilistic class label 08 min
    • Lecture18.30
      Code Sample:Decision boundary . 23 min
    • Lecture18.31
      Code Sample:Cross Validation 13 min
    • Lecture18.32
      Exercise: Apply k-NN on Amazon reviews dataset 05 min
  • Interview Questions on K-NN(K Nearest Neighbour) 0/0

    • Lecture19.1
      Questions & Answers 30 min
  • Classification algorithms in various situations 0/20

    • Lecture20.1
      Introduction 05 min
    • Lecture20.2
      Imbalanced vs balanced dataset 23 min
    • Lecture20.3
      Multi-class classification 12 min
    • Lecture20.4
      k-NN, given a distance or similarity matrix 09 min
    • Lecture20.5
      Train and test set differences 22 min
    • Lecture20.6
      Impact of outliers 07 min
    • Lecture20.7
      Local outlier Factor (Simple solution :Mean distance to Knn) 13 min
    • Lecture20.8
      k distance 04 min
    • Lecture20.9
      Reachability-Distance(A,B) 08 min
    • Lecture20.10
      Local reachability-density(A) 09 min
    • Lecture20.11
      Local outlier Factor(A) 21 min
    • Lecture20.12
      Impact of Scale & Column standardization 12 min
    • Lecture20.13
      Interpretability 12 min
    • Lecture20.14
      Feature Importance and Forward Feature selection 22 min
    • Lecture20.15
      Handling categorical and numerical features 24 min
    • Lecture20.16
      Handling missing values by imputation 21 min
    • Lecture20.17
      curse of dimensionality 27 min
    • Lecture20.18
      Bias-Variance tradeoff 24 min
    • Lecture20.19
      Intuitive understanding of bias-variance. 06 min
    • Lecture20.20
      best and wrost case of algorithm 06 min
  • Interview Questions on Classification algorithms in various situations 0/0

    • Lecture21.1
      Questions & Answers 30 min
  • Performance measurement of models 0/8

    • Lecture22.1
      Accuracy 15 min
    • Lecture22.2
      Confusion matrix, TPR, FPR, FNR, TNR 25 min
    • Lecture22.3
      Precision and recall, F1-score 10 min
    • Lecture22.4
      Receiver Operating Characteristic Curve (ROC) curve and AUC 19 min
    • Lecture22.5
      Log-loss 12 min
    • Lecture22.6
      R-Squared/Coefficient of determination 14 min
    • Lecture22.7
      Median absolute deviation (MAD) 05 min
    • Lecture22.8
      Distribution of errors 07 min
  • Interview Questions on Performance Measurement Models 0/0

    • Lecture23.1
      Questions & Answers 30 min
  • Naive Bayes 0/21

    • Lecture24.1
      Conditional probability 13 min
    • Lecture24.2
      Independent vs Mutually exclusive events 06 min
    • Lecture24.3
      Bayes Theorem with examples 18 min
    • Lecture24.4
      Exercise problems on Bayes Theorem 30 min
    • Lecture24.5
      Naive Bayes algorithm 26 min
    • Lecture24.6
      Toy example: Train and test stages 26 min
    • Lecture24.7
      Naive Bayes on Text data 16 min
    • Lecture24.8
      Laplace/Additive Smoothing 24 min
    • Lecture24.9
      Log-probabilities for numerical stability 11 min
    • Lecture24.10
      Bias and Variance tradeoff 14 min
    • Lecture24.11
      Feature importance and interpretability 10 min
    • Lecture24.12
      Imbalanced data 14 min
    • Lecture24.13
      Outliers 06 min
    • Lecture24.14
      Missing values 03 min
    • Lecture24.15
      Handling Numerical features (Gaussian NB) 13 min
    • Lecture24.16
      Multiclass classification 02 min
    • Lecture24.17
      Similarity or Distance matrix 03 min
    • Lecture24.18
      Large dimensionality 02 min
    • Lecture24.19
      Best and worst cases 08 min
    • Lecture24.20
      Code example 07 min
    • Lecture24.21
      Exercise: Apply Naive Bayes to Amazon reviews 06 min
  • Interview Questions on Naive Bayes Algorithm 0/0

    • Lecture25.1
      Questions & Answers 30 min
  • Logistic Regression 0/18

    • Lecture26.1
      Geometric intuition of Logistic Regression 31 min
    • Lecture26.2
      Sigmoid function: Squashing 37 min
    • Lecture26.3
      Mathematical formulation of Objective function 24 min
    • Lecture26.4
      Weight vector 11 min
    • Lecture26.5
      L2 Regularization: Overfitting and Underfitting 26 min
    • Lecture26.6
      L1 regularization and sparsity 11 min
    • Lecture26.7
      Probabilistic Interpretation: Gaussian Naive Bayes 19 min
    • Lecture26.8
      Loss minimization interpretation 24 min
    • Lecture26.9
      hyperparameters and random search 16 min
    • Lecture26.10
      Column Standardization 05 min
    • Lecture26.11
      Feature importance and model interpretability 14 min
    • Lecture26.12
      Collinearity of features 14 min
    • Lecture26.13
      Test/Run time space and time complexity 10 min
    • Lecture26.14
      Real world cases 11 min
    • Lecture26.15
      Non-linearly separable data & feature engineering 28 min
    • Lecture26.16
      Code sample: Logistic regression, GridSearchCV, RandomSearchCV 23 min
    • Lecture26.17
      Exercise: Apply Logistic regression to Amazon reviews dataset. 06 min
    • Lecture26.18
      Extensions to Generalized linear models 09 min
  • Linear Regression 0/4

    • Lecture27.1
      Geometric intuition 13 min
    • Lecture27.2
      Mathematical formulation 14 min
    • Lecture27.3
      Real world Cases 08 min
    • Lecture27.4
      Code sample for Linear Regression 13 min
  • Solving optimization problems 0/12

    • Lecture28.1
      Differentiation 29 min
    • Lecture28.2
      Online differentiation tools 08 min
    • Lecture28.3
      Maxima and Minima 12 min
    • Lecture28.4
      Vector calculus: Grad 10 min
    • Lecture28.5
      Gradient descent: geometric intuition 19 min
    • Lecture28.6
      Learning rate
    • Lecture28.7
      Gradient descent for linear regression 08 min
    • Lecture28.8
      SGD algorithm 09 min
    • Lecture28.9
      Constrained Optimization & PCA 14 min
    • Lecture28.10
      Logistic regression formulation revisited 06 min
    • Lecture28.11
      Why L1 regularization creates sparsity? 17 min
    • Lecture28.12
      Exercise: Implement SGD for linear regression 06 min
    • Lecture28.13
      Interview Questions on Logistic Regression and Linear Regression 30 min
  • Interview Questions on Logistic Regression and Linear Regression 0/0

    • Lecture29.1
      Questions & Answers 30 min
  • Support Vector Machines (SVM) 0/15

    • Lecture30.1
      Geometric Intution 20 min
    • Lecture30.2
      Why we take values +1 and and -1 for Support vector planes 09 min
    • Lecture30.3
      Mathematical derivation 32 min
    • Lecture30.4
      Loss function (Hinge Loss) based interpretation 18 min
    • Lecture30.5
      Dual form of SVM formulation 16 min
    • Lecture30.6
      kernel trick 10 min
    • Lecture30.7
      Polynomial kernel 11 min
    • Lecture30.8
      RBF-Kernel 21 min
    • Lecture30.9
      Domain specific Kernels 06 min
    • Lecture30.10
      Train and run time complexities 08 min
    • Lecture30.11
      nu-SVM: control errors and support vectors 06 min
    • Lecture30.12
      SVM Regression 08 min
    • Lecture30.13
      Cases 09 min
    • Lecture30.14
      Code Samples 14 min
    • Lecture30.15
      Exercise: Apply SVM to Amazon reviews dataset 04 min
  • Interview Questions on Support Vector Machine 0/0

    • Lecture31.1
      Questions & Answers 30 min
  • Decision Trees 0/15

    • Lecture32.1
      Geometric Intuition of decision tree: Axis parallel hyperplanes 17 min
    • Lecture32.2
      Sample Decision tree 08 min
    • Lecture32.3
      Building a decision Tree:Entropy 19 min
    • Lecture32.4
      Building a decision Tree:Information Gain 10 min
    • Lecture32.5
      Building a decision Tree: Gini Impurity 07 min
    • Lecture32.6
      Building a decision Tree: Constructing a DT 21 min
    • Lecture32.7
      Building a decision Tree: Splitting numerical features 08 min
    • Lecture32.8
      Feature standardization 04 min
    • Lecture32.9
      Building a decision Tree:Categorical features with many possible values 07 min
    • Lecture32.10
      Overfitting and Underfitting 08 min
    • Lecture32.11
      Train and Run time complexity 07 min
    • Lecture32.12
      Regression using Decision Trees 09 min
    • Lecture32.13
      Cases 12 min
    • Lecture32.14
      Code Samples 09 min
    • Lecture32.15
      Exercise: Decision Trees on Amazon reviews dataset 03 min
  • Interview Questions on decision Trees 0/0

    • Lecture33.1
      Questions & Answers 30 min
  • Ensemble Models 0/19

    • Lecture34.1
      What are ensembles? 06 min
    • Lecture34.2
      Bootstrapped Aggregation (Bagging) Intuition 17 min
    • Lecture34.3
      Random Forest and their construction 15 min
    • Lecture34.4
      Bias-Variance tradeoff 07 min
    • Lecture34.5
      Train and run time complexity 09 min
    • Lecture34.6
      Bagging:Code Sample 04 min
    • Lecture34.7
      Extremely randomized trees 08 min
    • Lecture34.8
      Random Tree :Cases 06 min
    • Lecture34.9
      Boosting Intuition 17 min
    • Lecture34.10
      Residuals, Loss functions and gradients 13 min
    • Lecture34.11
      Gradient Boosting 10 min
    • Lecture34.12
      Regularization by Shrinkage 08 min
    • Lecture34.13
      Train and Run time complexity 06 min
    • Lecture34.14
      XGBoost: Boosting + Randomization 14 min
    • Lecture34.15
      AdaBoost: geometric intuition 07 min
    • Lecture34.16
      Stacking models 22 min
    • Lecture34.17
      Cascading classifiers 15 min
    • Lecture34.18
      Kaggle competitions vs Real world 09 min
    • Lecture34.19
      Exercise: Apply GBDT and RF to Amazon reviews dataset. 04 min
  • K-Means Clustering Technique 0/11

    • Lecture35.1
      Geometric intuition, Centroids
    • Lecture35.2
      Mathematical formulation: Objective function
    • Lecture35.3
      K-Means Algoithm
    • Lecture35.4
      How to initialize: K-Means++
    • Lecture35.5
      Failure cases/Limitations
    • Lecture35.6
      K-Medoids
    • Lecture35.7
      Kernel K-Means and Spectral Clustering
    • Lecture35.8
      Determining the right K
    • Lecture35.9
      Time and space complexity
    • Lecture35.10
      Code Samples
    • Lecture35.11
      Exercise: Cluster Amazon reviews
  • Bias-Variance tradeoff 0/3

    • Lecture36.1
      Intuition: Underfit and Overfit
    • Lecture36.2
      Derivation for linear regression
    • Lecture36.3
      Bias Variance tradeoff for k-NN, NaiveBayes, Logistic Regression, Linear regression
  • Hierarchical clustering Technique 0/4

    • Lecture37.1
      Agglomerative vs Divisive
    • Lecture37.2
      Agglomerative Algorithm
    • Lecture37.3
      MIN, MAX, Average methods
    • Lecture37.4
      Advantages and Limitations
  • DBSCAN (Density based clustering) Technique 0/6

    • Lecture38.1
      MinPts and Eps: Density
    • Lecture38.2
      Core, Border and Noise points
    • Lecture38.3
      Density edge and Density connected points
    • Lecture38.4
      DBSCAN Algorithm
    • Lecture38.5
      Determining the optimal Hyper Parameters: MinPts and Eps
    • Lecture38.6
      Sensitivity issues of DBSCAN
  • Recommender Systems and Matrix Factorization 0/4

    • Lecture39.1
      Problem formulation: IMDB Movie reviews
    • Lecture39.2
      Content based vs Collaborative Filtering
    • Lecture39.3
      Item-Item and User-User Similarity based Algorithms
    • Lecture39.4
      Introduction to Matrix Factorization
  • Python for Data Science: OOPS(object oriented program) 0/2

    • Lecture40.1
      Principles of Object oriented programming
    • Lecture40.2
      classes and objects
  • Python for Data Science: Seaborn 0/1

    • Lecture41.1
      Getting Started with Seaborn
  • Python for Data Science: Scikit Learn 0/1

    • Lecture42.1
      Getting started with scikit learn
  • Interview Questions on Ensemble Models 0/0

    • Lecture43.1
      Questions & Answers 30 min
  • Facebook Friend Recommendation using Graph Mining 0/19

    • Lecture44.1
      Problem definition 06 min
    • Lecture44.2
      Overview of Graphs: node/vertex, edge/link, directed-edge, path. 11 min
    • Lecture44.3
      Data format & Limitations. 09 min
    • Lecture44.4
      Mapping to a supervised classification problem. 09 min
    • Lecture44.5
      Business constraints & Metrics. 07 min
    • Lecture44.6
      EDA:Basic Stats 01 hour 01 min
    • Lecture44.7
      EDA:Follower and following stats. 12 min
    • Lecture44.8
      EDA:Binary Classification Task 16 min
    • Lecture44.9
      EDA:Train and test split. 39 min
    • Lecture44.10
      Feature engineering on Graphs:Jaccard & Cosine Similarities 15 min
    • Lecture44.11
      PageRank 14 min
    • Lecture44.12
      Shortest Path 04 min
    • Lecture44.13
      Connected-components 12 min
    • Lecture44.14
      Adar Index 12 min
    • Lecture44.15
      Kartz Centrality 06 min
    • Lecture44.16
      HITS Score 10 min
    • Lecture44.17
      SVD 11 min
    • Lecture44.18
      Weight features 06 min
    • Lecture44.19
      Modeling 10 min
---67444-------not-logged-in------9576--------
    The content of this item is restricted.. Please Login
    Prev Mapping to a supervised classification problem.
    Next EDA:Basic Stats

    Our courses

    • Applied Machine Learning Course
    • case studies
    • Workshop

    Contact us

    • +91 8106-920-029
    • +91 8977-385-020
    • +91 6301-939-583
      ( whatsapp business)

    More

    • Success stories
    • Job Guarantee
    • Incubation Center
    • FAQ's

    © 2018- All rights are reserved- AAIC Technologies pvt ltd