Facebook Friend Recommendation using Graph Mining

₹15,000.00
  • Python for Data Science Introduction 0/0

  • Python for Data Science: Data Structures 0/6

    • Lecture2.1
      Lists 38 min
    • Lecture2.2
      Tuples part 1 10 min
    • Lecture2.3
      Tuples part-2 04 min
    • Lecture2.4
      Sets 16 min
    • Lecture2.5
      Dictionary 21 min
    • Lecture2.6
      Strings 16 min
  • Python for Data Science: Numpy 0/2

    • Lecture3.1
      Numpy Introduction 41 min
    • Lecture3.2
      Numerical operations on Numpy 41 min
  • Python for Data Science: Functions 0/10

    • Lecture4.1
      Introduction 13 min
    • Lecture4.2
      Types of functions 25 min
    • Lecture4.3
      Function arguments 10 min
    • Lecture4.4
      Recursive functions 16 min
    • Lecture4.5
      Lambda functions 08 min
    • Lecture4.6
      Modules 07 min
    • Lecture4.7
      Packages 06 min
    • Lecture4.8
      File Handling 23 min
    • Lecture4.9
      Exception Handling 15 min
    • Lecture4.10
      Debugging Python 15 min
  • Python for Data Science: Matplotlib 0/1

    • Lecture5.1
      Getting started with Matplotlib 20 min
  • Python for Data Science: Pandas 0/3

    • Lecture6.1
      Getting started with pandas 08 min
    • Lecture6.2
      Data Frame Basics 09 min
    • Lecture6.3
      Key Operations on Data Frames 31 min
  • Python for Data Science: Computational Complexity 0/4

    • Lecture7.1
      Space and Time Complexity: Find largest number in a list 20 min
    • Lecture7.2
      Binary search 17 min
    • Lecture7.3
      Find elements common in two lists 06 min
    • Lecture7.4
      Find elements common in two lists using a Hashtable/Dict 12 min
  • Plotting for exploratory data analysis (EDA) 0/0

    exploratory data analysis (EDA) is an approach to analyzing data sets to summarize their main characteristics, often with visual methods. A statistical model can be used or not, but primarily EDA is for seeing what the data can tell us beyond the formal modeling or hypothesis testing task.

  • Linear Algebra 0/1

    It will give you the tools to help you with the other areas of mathematics required to understand and build better intuitions for machine learning algorithms.

  • Interview Questions on Linear Algebra 0/0

  • Probability and Statistics 0/28

    • Lecture11.1
      Introduction to Probability and Stats 17 min
    • Lecture11.2
      Population and Sample 07 min
    • Lecture11.3
      Gaussian/Normal Distribution and its PDF(Probability Density Function) 27 min
    • Lecture11.4
      CDF(Cumulative Distribution function) of Gaussian/Normal distribution 11 min
    • Lecture11.5
      Symmetric distribution, Skewness and Kurtosis 05 min
    • Lecture11.6
      Standard normal standardization 05 min
    • Lecture11.7
      Kernel density estimation 07 min
    • Lecture11.8
      Sampling distribution & Central Limit theorem 19 min
    • Lecture11.9
      Q-Q plot:How to test if a random variable is normally distributed or not? 23 min
    • Lecture11.10
      Discrete and Continuous Uniform distributions 13 min
    • Lecture11.11
      How to randomly sample data points (Uniform Distribution) 10 min
    • Lecture11.12
      Bernoulli and Binomial Distribution 11 min
    • Lecture11.13
      Log Normal Distribution 12 min
    • Lecture11.14
      Power law distribution 12 min
    • Lecture11.15
      Box cox transform 12 min
    • Lecture11.16
      Co-variance 14 min
    • Lecture11.17
      Pearson Correlation Coefficient 13 min
    • Lecture11.18
      Spearman Rank Correlation Coefficient 07 min
    • Lecture11.19
      Correlation vs Causation 03 min
    • Lecture11.20
      Confidence interval (C.I) Introduction 08 min
    • Lecture11.21
      Discrete and Continuous Uniform distributions 11 min
    • Lecture11.22
      C.I for mean of a normal random variable 14 min
    • Lecture11.23
      Confidence interval using bootstrapping 17 min
    • Lecture11.24
      Hypothesis testing methodology, Null-hypothesis, p-value 16 min
    • Lecture11.25
      Resampling and permutation test 15 min
    • Lecture11.26
      K-S Test for similarity of distributions 15 min
    • Lecture11.27
      K-S Test for similarity of two distributions 06 min
    • Lecture11.28
      Hypothesis Testing Intution with coin toss example 27 min
    • Lecture11.29
      Hypothesis testing Mean differences Example 18 min
    • Lecture11.30
      Resampling 19 min
  • Interview Questions on Probability and statistics 0/0

  • Dimensionality reduction and Visualization: 0/0

    In machine learning and statistics, dimensionality reduction or dimension reduction is the process of reducing the number of random variables under consideration, via obtaining a set of principal variables. It can be divided into feature selection and feature extraction.

  • Interview Questions on Dimensionality Reduction 0/0

  • PCA(principal component analysis) 0/0

  • (t-SNE)T-distributed Stochastic Neighbourhood Embedding 0/1

  • Real world problem: Predict rating given product reviews on Amazon 0/17

    • Lecture17.1
      Dataset overview: Amazon Fine Food reviews(EDA) 23 min
    • Lecture17.2
      Data Cleaning: Deduplication 15 min
    • Lecture17.3
      Why convert text to a vector? 14 min
    • Lecture17.4
      Bag of Words (BoW) 18 min
    • Lecture17.5
      Text Preprocessing: Stemming, Stop-word removal, Tokenization, Lemmatization. 15 min
    • Lecture17.6
      uni-gram, bi-gram, n-grams. 09 min
    • Lecture17.7
      tf-idf (term frequency- inverse document frequency) 22 min
    • Lecture17.8
      Why use log in IDF? 14 min
    • Lecture17.9
      Word2Vec. 16 min
    • Lecture17.10
      Avg-Word2Vec, tf-idf weighted Word2Vec 09 min
    • Lecture17.11
      Bag of Words( Code Sample) 19 min
    • Lecture17.12
      Text Preprocessing( Code Sample) 11 min
    • Lecture17.13
      Bi-Grams and n-grams (Code Sample) 05 min
    • Lecture17.14
      TF-IDF (Code Sample) 06 min
    • Lecture17.15
      Word2Vec (Code Sample) 12 min
    • Lecture17.16
      Avg-Word2Vec and TFIDF-Word2Vec (Code Sample) 02 min
    • Lecture17.17
      Exercise: t-SNE visualization of Amazon reviews with polarity based color-coding 06 min
  • Classification And Regression Models: K-Nearest Neighbors 0/31

    • Lecture18.1
      How “Classification” works? 10 min
    • Lecture18.2
      Data matrix notation 07 min
    • Lecture18.3
      Classification vs Regression (examples) 06 min
    • Lecture18.4
      K-Nearest Neighbours Geometric intuition with a toy example 11 min
    • Lecture18.5
      Failure cases of KNN 07 min
    • Lecture18.6
      Distance measures: Euclidean(L2) , Manhattan(L1), Minkowski, Hamming 20 min
    • Lecture18.7
      Cosine Distance & Cosine Similarity 19 min
    • Lecture18.8
      How to measure the effectiveness of k-NN? 16 min
    • Lecture18.9
      Test/Evaluation time and space complexity 12 min
    • Lecture18.10
      KNN Limitations 09 min
    • Lecture18.11
      Decision surface for K-NN as K changes 23 min
    • Lecture18.12
      Overfitting and Underfitting 12 min
    • Lecture18.13
      Need for Cross validation 22 min
    • Lecture18.14
      K-fold cross validation 17 min
    • Lecture18.15
      Visualizing train, validation and test datasets 13 min
    • Lecture18.16
      How to determine overfitting and underfitting? 19 min
    • Lecture18.17
      Time based splitting 19 min
    • Lecture18.18
      k-NN for regression 05 min
    • Lecture18.19
      Weighted k-NN 08 min
    • Lecture18.20
      Voronoi diagram 04 min
    • Lecture18.21
      Binary search tree 16 min
    • Lecture18.22
      How to build a kd-tree 17 min
    • Lecture18.23
      Find nearest neighbours using kd-tree 13 min
    • Lecture18.24
      Limitations of Kd tree 09 min
    • Lecture18.25
      Extensions 03 min
    • Lecture18.26
      Hashing vs LSH 10 min
    • Lecture18.27
      LSH for cosine similarity 40 min
    • Lecture18.28
      LSH for euclidean distance 13 min
    • Lecture18.29
      Probabilistic class label 08 min
    • Lecture18.30
      Code Sample:Decision boundary . 23 min
    • Lecture18.31
      Code Sample:Cross Validation 13 min
    • Lecture18.32
      Exercise: Apply k-NN on Amazon reviews dataset 05 min
  • Interview Questions on K-NN(K Nearest Neighbour) 0/0

  • Classification algorithms in various situations 0/20

    • Lecture20.1
      Introduction 05 min
    • Lecture20.2
      Imbalanced vs balanced dataset 23 min
    • Lecture20.3
      Multi-class classification 12 min
    • Lecture20.4
      k-NN, given a distance or similarity matrix 09 min
    • Lecture20.5
      Train and test set differences 22 min
    • Lecture20.6
      Impact of outliers 07 min
    • Lecture20.7
      Local outlier Factor (Simple solution :Mean distance to Knn) 13 min
    • Lecture20.8
      k distance 04 min
    • Lecture20.9
      Reachability-Distance(A,B) 08 min
    • Lecture20.10
      Local reachability-density(A) 09 min
    • Lecture20.11
      Local outlier Factor(A) 21 min
    • Lecture20.12
      Impact of Scale & Column standardization 12 min
    • Lecture20.13
      Interpretability 12 min
    • Lecture20.14
      Feature Importance and Forward Feature selection 22 min
    • Lecture20.15
      Handling categorical and numerical features 24 min
    • Lecture20.16
      Handling missing values by imputation 21 min
    • Lecture20.17
      curse of dimensionality 27 min
    • Lecture20.18
      Bias-Variance tradeoff 24 min
    • Lecture20.19
      Intuitive understanding of bias-variance. 06 min
    • Lecture20.20
      best and wrost case of algorithm 06 min
  • Interview Questions on Classification algorithms in various situations 0/0

  • Performance measurement of models 0/8

    • Lecture22.1
      Accuracy 15 min
    • Lecture22.2
      Confusion matrix, TPR, FPR, FNR, TNR 25 min
    • Lecture22.3
      Precision and recall, F1-score 10 min
    • Lecture22.4
      Receiver Operating Characteristic Curve (ROC) curve and AUC 19 min
    • Lecture22.5
      Log-loss 12 min
    • Lecture22.6
      R-Squared/Coefficient of determination 14 min
    • Lecture22.7
      Median absolute deviation (MAD) 05 min
    • Lecture22.8
      Distribution of errors 07 min
  • Interview Questions on Performance Measurement Models 0/0

  • Naive Bayes 0/21

    • Lecture24.1
      Conditional probability 13 min
    • Lecture24.2
      Independent vs Mutually exclusive events 06 min
    • Lecture24.3
      Bayes Theorem with examples 18 min
    • Lecture24.4
      Exercise problems on Bayes Theorem 30 min
    • Lecture24.5
      Naive Bayes algorithm 26 min
    • Lecture24.6
      Toy example: Train and test stages 26 min
    • Lecture24.7
      Naive Bayes on Text data 16 min
    • Lecture24.8
      Laplace/Additive Smoothing 24 min
    • Lecture24.9
      Log-probabilities for numerical stability 11 min
    • Lecture24.10
      Bias and Variance tradeoff 14 min
    • Lecture24.11
      Feature importance and interpretability 10 min
    • Lecture24.12
      Imbalanced data 14 min
    • Lecture24.13
      Outliers 06 min
    • Lecture24.14
      Missing values 03 min
    • Lecture24.15
      Handling Numerical features (Gaussian NB) 13 min
    • Lecture24.16
      Multiclass classification 02 min
    • Lecture24.17
      Similarity or Distance matrix 03 min
    • Lecture24.18
      Large dimensionality 02 min
    • Lecture24.19
      Best and worst cases 08 min
    • Lecture24.20
      Code example 07 min
    • Lecture24.21
      Exercise: Apply Naive Bayes to Amazon reviews 06 min
  • Interview Questions on Naive Bayes Algorithm 0/0

  • Logistic Regression 0/18

    • Lecture26.1
      Geometric intuition of Logistic Regression 31 min
    • Lecture26.2
      Sigmoid function: Squashing 37 min
    • Lecture26.3
      Mathematical formulation of Objective function 24 min
    • Lecture26.4
      Weight vector 11 min
    • Lecture26.5
      L2 Regularization: Overfitting and Underfitting 26 min
    • Lecture26.6
      L1 regularization and sparsity 11 min
    • Lecture26.7
      Probabilistic Interpretation: Gaussian Naive Bayes 19 min
    • Lecture26.8
      Loss minimization interpretation 24 min
    • Lecture26.9
      hyperparameters and random search 16 min
    • Lecture26.10
      Column Standardization 05 min
    • Lecture26.11
      Feature importance and model interpretability 14 min
    • Lecture26.12
      Collinearity of features 14 min
    • Lecture26.13
      Test/Run time space and time complexity 10 min
    • Lecture26.14
      Real world cases 11 min
    • Lecture26.15
      Non-linearly separable data & feature engineering 28 min
    • Lecture26.16
      Code sample: Logistic regression, GridSearchCV, RandomSearchCV 23 min
    • Lecture26.17
      Exercise: Apply Logistic regression to Amazon reviews dataset. 06 min
    • Lecture26.18
      Extensions to Generalized linear models 09 min
  • Linear Regression 0/4

    • Lecture27.1
      Geometric intuition 13 min
    • Lecture27.2
      Mathematical formulation 14 min
    • Lecture27.3
      Real world Cases 08 min
    • Lecture27.4
      Code sample for Linear Regression 13 min
  • Solving optimization problems 0/12

    • Lecture28.1
      Differentiation 29 min
    • Lecture28.2
      Online differentiation tools 08 min
    • Lecture28.3
      Maxima and Minima 12 min
    • Lecture28.4
      Vector calculus: Grad 10 min
    • Lecture28.5
      Gradient descent: geometric intuition 19 min
    • Lecture28.6
      Learning rate
    • Lecture28.7
      Gradient descent for linear regression 08 min
    • Lecture28.8
      SGD algorithm 09 min
    • Lecture28.9
      Constrained Optimization & PCA 14 min
    • Lecture28.10
      Logistic regression formulation revisited 06 min
    • Lecture28.11
      Why L1 regularization creates sparsity? 17 min
    • Lecture28.12
      Exercise: Implement SGD for linear regression 06 min
    • Lecture28.13
      Interview Questions on Logistic Regression and Linear Regression 30 min
  • Interview Questions on Logistic Regression and Linear Regression 0/0

  • Support Vector Machines (SVM) 0/15

    • Lecture30.1
      Geometric Intution 20 min
    • Lecture30.2
      Why we take values +1 and and -1 for Support vector planes 09 min
    • Lecture30.3
      Mathematical derivation 32 min
    • Lecture30.4
      Loss function (Hinge Loss) based interpretation 18 min
    • Lecture30.5
      Dual form of SVM formulation 16 min
    • Lecture30.6
      kernel trick 10 min
    • Lecture30.7
      Polynomial kernel 11 min
    • Lecture30.8
      RBF-Kernel 21 min
    • Lecture30.9
      Domain specific Kernels 06 min
    • Lecture30.10
      Train and run time complexities 08 min
    • Lecture30.11
      nu-SVM: control errors and support vectors 06 min
    • Lecture30.12
      SVM Regression 08 min
    • Lecture30.13
      Cases 09 min
    • Lecture30.14
      Code Samples 14 min
    • Lecture30.15
      Exercise: Apply SVM to Amazon reviews dataset 04 min
  • Interview Questions on Support Vector Machine 0/0

  • Decision Trees 0/15

    • Lecture32.1
      Geometric Intuition of decision tree: Axis parallel hyperplanes 17 min
    • Lecture32.2
      Sample Decision tree 08 min
    • Lecture32.3
      Building a decision Tree:Entropy 19 min
    • Lecture32.4
      Building a decision Tree:Information Gain 10 min
    • Lecture32.5
      Building a decision Tree: Gini Impurity 07 min
    • Lecture32.6
      Building a decision Tree: Constructing a DT 21 min
    • Lecture32.7
      Building a decision Tree: Splitting numerical features 08 min
    • Lecture32.8
      Feature standardization 04 min
    • Lecture32.9
      Building a decision Tree:Categorical features with many possible values 07 min
    • Lecture32.10
      Overfitting and Underfitting 08 min
    • Lecture32.11
      Train and Run time complexity 07 min
    • Lecture32.12
      Regression using Decision Trees 09 min
    • Lecture32.13
      Cases 12 min
    • Lecture32.14
      Code Samples 09 min
    • Lecture32.15
      Exercise: Decision Trees on Amazon reviews dataset 03 min
  • Interview Questions on decision Trees 0/0

  • Ensemble Models 0/19

    • Lecture34.1
      What are ensembles? 06 min
    • Lecture34.2
      Bootstrapped Aggregation (Bagging) Intuition 17 min
    • Lecture34.3
      Random Forest and their construction 15 min
    • Lecture34.4
      Bias-Variance tradeoff 07 min
    • Lecture34.5
      Train and run time complexity 09 min
    • Lecture34.6
      Bagging:Code Sample 04 min
    • Lecture34.7
      Extremely randomized trees 08 min
    • Lecture34.8
      Random Tree :Cases 06 min
    • Lecture34.9
      Boosting Intuition 17 min
    • Lecture34.10
      Residuals, Loss functions and gradients 13 min
    • Lecture34.11
      Gradient Boosting 10 min
    • Lecture34.12
      Regularization by Shrinkage 08 min
    • Lecture34.13
      Train and Run time complexity 06 min
    • Lecture34.14
      XGBoost: Boosting + Randomization 14 min
    • Lecture34.15
      AdaBoost: geometric intuition 07 min
    • Lecture34.16
      Stacking models 22 min
    • Lecture34.17
      Cascading classifiers 15 min
    • Lecture34.18
      Kaggle competitions vs Real world 09 min
    • Lecture34.19
      Exercise: Apply GBDT and RF to Amazon reviews dataset. 04 min
  • K-Means Clustering Technique 0/11

    • Lecture35.1
      Geometric intuition, Centroids
    • Lecture35.2
      Mathematical formulation: Objective function
    • Lecture35.3
      K-Means Algoithm
    • Lecture35.4
      How to initialize: K-Means++
    • Lecture35.5
      Failure cases/Limitations
    • Lecture35.6
      K-Medoids
    • Lecture35.7
      Kernel K-Means and Spectral Clustering
    • Lecture35.8
      Determining the right K
    • Lecture35.9
      Time and space complexity
    • Lecture35.10
      Code Samples
    • Lecture35.11
      Exercise: Cluster Amazon reviews
  • Bias-Variance tradeoff 0/3

    • Lecture36.1
      Intuition: Underfit and Overfit
    • Lecture36.2
      Derivation for linear regression
    • Lecture36.3
      Bias Variance tradeoff for k-NN, NaiveBayes, Logistic Regression, Linear regression
  • Hierarchical clustering Technique 0/4

    • Lecture37.1
      Agglomerative vs Divisive
    • Lecture37.2
      Agglomerative Algorithm
    • Lecture37.3
      MIN, MAX, Average methods
    • Lecture37.4
      Advantages and Limitations
  • DBSCAN (Density based clustering) Technique 0/6

    • Lecture38.1
      MinPts and Eps: Density
    • Lecture38.2
      Core, Border and Noise points
    • Lecture38.3
      Density edge and Density connected points
    • Lecture38.4
      DBSCAN Algorithm
    • Lecture38.5
      Determining the optimal Hyper Parameters: MinPts and Eps
    • Lecture38.6
      Sensitivity issues of DBSCAN
  • Recommender Systems and Matrix Factorization 0/4

    • Lecture39.1
      Problem formulation: IMDB Movie reviews
    • Lecture39.2
      Content based vs Collaborative Filtering
    • Lecture39.3
      Item-Item and User-User Similarity based Algorithms
    • Lecture39.4
      Introduction to Matrix Factorization
  • Python for Data Science: OOPS(object oriented program) 0/2

    • Lecture40.1
      Principles of Object oriented programming
    • Lecture40.2
      classes and objects
  • Python for Data Science: Seaborn 0/1

    • Lecture41.1
      Getting Started with Seaborn
  • Python for Data Science: Scikit Learn 0/1

    • Lecture42.1
      Getting started with scikit learn
  • Interview Questions on Ensemble Models 0/0

Statement:

Facebook thrives on its users networking with new users, so the social media site offers inducements for users to add each other as friends. Sometimes, you may receive recommendations for other users you can add as a friend. Facebook does this so that you can reconnect with old friends and grow your network.

You will be given a directed social graph, represented in a 2-column csv (source_node, destination_node), we need to predict the destination nodes for a give a source node.

 

Data type: CSV files

Train data: train.csv (source node, destination node)

Data Size: 142MB

The AppliedAIProject attempts to teach students/course-participants some of the core ideas in machine learning, data-science and AI that would help the participants go from a real world business problem to a first cut, working and deployable AI solution to the problem. Our primary focus is to help participants build real world AI solutions using the skills they learn in this course.

This course will focus on practical knowledge more than mathematical or theoretical rigor. That doesn’t mean that we would water down the content. We will try and balance the theory and practice while giving more preference to the practical and applied aspects of AI as the course name suggests. Through the course, we will work on this case study of real world AI problem and dataset to help students grasp the practical details of building AI solutions. For each idea/algorithm in AI, we would provide examples to provide the intuition and show how the idea to used in the real world.

Key Points:

  1. Validity of this course is 240 days( i.e Starts from the date of your registration to this course)
  2. Expert Guidance, we will try to answer your queries in atmost 24hours
  3. 10+ machine learning algorithms will be taught in this course.
  4. No prerequisites– we will teach every thing from basics ( we just expect you to know basic programming)
  5.  Python for Data science is part of the course curriculum.

 

Target Audience:

We are building our course content and teaching methodology to cater to the needs to students at various levels of expertise and varying background skills. This course can be taken by anyone with a working knowledge of a modern programming language like C/C++/Java/Python. We expect the average student to spend at least 5 hours a week over a 6 month period amounting to a 145+ hours of effort. More the effort, better the results. Here is a list of customers who would benefit from our course:

    1. Undergrad (BS/BTech/BE) students in engineering and science.
    2. Grad(MS/MTech/ME/MCA) students in engineering and science.
    3. Working professionals: Software engineers, Business analysts, Product managers, Program managers, Managers, Startup teams building ML products/services.

Course Features

  • Lectures 347
  • Quizzes 0
  • Duration 100+ hours
  • Skill level All levels
  • Language English
  • Students 0
  • Assessments Yes
QUALIFICATION: Masters from IISC Bangalore PROFESSIONAL EXPIERENCE: 9+ years of Experience( Yahoo Labs, Matherix Labs Co-founder and Amazon)
₹15,000.00

Leave A Reply